298 research outputs found

    The scaling of the decoherence factor of a qubit coupled to a spin chain driven across quantum critical points

    Full text link
    We study the scaling of the decoherence factor of a qubit (spin-1/2) using the central spin model in which the central spin (qubit) is globally coupled to a transverse XY spin chain. The aim here is to study the non-equilibrium generation of decoherence when the spin chain is driven across (along) quantum critical points (lines) and derive the scaling of the decoherence factor in terms of the driving rate and some of the exponents associated with the quantum critical points. Our studies show that the scaling of logarithm of decoherence factor is identical to that of the defect density in the final state of the spin chain following a quench across isolated quantum critical points for both linear and non-linear variations of a parameter even if the defect density may not satisfy the standard Kibble-Zurek scaling. However, one finds an interesting deviation when the spin chain is driven along a critical line. Our analytical predictions are in complete agreement with numerical results. Our study, though limited to integrable two-level systems, points to the existence of a universality in the scaling of the decoherence factor which is not necessarily identical to the scaling of the defect density.Comment: 5 pages, 2 figures, Final and accepted versio

    Quenching through Dirac and semi-Dirac points in optical Lattices: Kibble-Zurek scaling for anisotropic Quantum-Critical systems

    Full text link
    We propose that Kibble-Zurek scaling can be studied in optical lattices by creating geometries that support, Dirac, Semi-Dirac and Quadratic Band Crossings. On a Honeycomb lattice with fermions, as a staggered on-site potential is varied through zero, the system crosses the gapless Dirac points, and we show that the density of defects created scales as 1/τ1/\tau, where τ\tau is the inverse rate of change of the potential, in agreement with the Kibble-Zurek relation. We generalize the result for a passage through a semi-Dirac point in dd dimensions, in which spectrum is linear in mm parallel directions and quadratic in rest of the perpendicular (dm)(d-m) directions. We find that the defect density is given by 1/τmνz+(dm)νz 1 /{\tau^{m\nu_{||}z_{||}+(d-m)\nu_{\perp}z_{\perp}}} where ν,z\nu_{||}, z_{||} and ν,z\nu_{\perp},z_{\perp} are the dynamical exponents and the correlation length exponents along the parallel and perpendicular directions, respectively. The scaling relations are also generalized to the case of non-linear quenching

    Biology of Blepharida-group flea beetles with first notes on natural history of Podontia congregata Baly, 1865 an endemic flea beetle from southern India (Coleoptera, Chrysomelidae, Galerucinae, Alticini)

    Get PDF
    This is a publisher's version, also available electronically at http://www.pensoft.net/index.php.The biology, host plants, and pest status of Podontia Dalman, 1824 species are reviewed. Natural history of Podontia congregata Baly, 1865 a flea beetle endemic to southern India, is reported for the first time. It is distributed from the Western Ghats Mountains westward to the plains. Clusiaceae is reported as a new host plant family for Blepharida-group species, with Garcinia gummi-gutta (L.) N. Robson (Clusiaceae) as the host plant for P. congregata. Pentatomid bugs attack the larvae but not eggs, pupae, or adults. A new egg parasitoid species, Ooencyrtus keralensis Hayat and Prathapan, 2010 (Hymenoptera: Encyrtidae), was discovered. Aspects of P. congregata host selection, life cycle, and larval fecal defenses are consistent with its inclusion in the Blepharida-genus group

    Defect production due to quenching through a multicritical point

    Full text link
    We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/τt/\tau, where τ\tau is the characteristic time scale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (nn) in the final state is not necessarily given by the Kibble-Zurek scaling form n1/τdν/(zν+1)n \sim 1/\tau^{d \nu/(z \nu +1)}, where dd is the spatial dimension, and ν\nu and zz are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n1/τd/(2z2)n \sim 1/\tau^{d/(2z_2)}, where the exponent z2z_2 determines the behavior of the off-diagonal term of the 2×22 \times 2 Landau-Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point.Comment: 4 pages, 2 figures, updated references and added one figur

    A NEW SPECIES-GROUP IN APHTHONA CHEVROLAT (COLEOPTERA: CHRYSOMELIDAE) WITH A DESCRIPTION OF A NEW SPECIES FROM SOUTHERN INDIA

    Get PDF
    A new species-group in the flea beetle genus Aphthona Chevrolat is defined and Aphthona yercaudensis Prathapan and Konstantinov, new species, from southern India is described. A key to Aphthona species-groups in the Oriental Region is provided. Herbaceous species of Phyllanthus L. (Euphorbiaceae) are recorded as the host plants of Aphthona bombayensis Scherer

    Quenching Dynamics of a quantum XY spin-1/2 chain in presence of a transverse field

    Full text link
    We study the quantum dynamics of a one-dimensional spin-1/2 anisotropic XY model in a transverse field when the transverse field or the anisotropic interaction is quenched at a slow but uniform rate. The two quenching schemes are called transverse and anisotropic quenching respectively. Our emphasis in this paper is on the anisotropic quenching scheme and we compare the results with those of the other scheme. In the process of anisotropic quenching, the system crosses all the quantum critical lines of the phase diagram where the relaxation time diverges. The evolution is non-adiabatic in the time interval when the parameters are close to their critical values, and is adiabatic otherwise. The density of defects produced due to non-adiabatic transitions is calculated by mapping the many-particle system to an equivalent Landau-Zener problem and is generally found to vary as 1/τ1/\sqrt{\tau}, where τ\tau is the characteristic time scale of quenching, a scenario that supports the Kibble-Zurek mechanism. Interestingly, in the case of anisotropic quenching, there exists an additional non-adiabatic transition, in comparison to the transverse quenching case, with the corresponding probability peaking at an incommensurate value of the wave vector. In the special case in which the system passes through a multi-critical point, the defect density is found to vary as 1/τ1/61/\tau^{1/6}. The von Neumann entropy of the final state is shown to maximize at a quenching rate around which the ordering of the final state changes from antiferromagnetic to ferromagnetic.Comment: 8 pages, 6 figure

    Descriptions of eight new species of Phaelota (Coleoptera: Chrysomelidae) with a new generic synonymy and a key to species of Indian subcontinent

    Get PDF
    Six new species of Phaelota Jacoby from India viz. P. assamensis, P. kottigehara, P. maculipennis, P. mauliki, P. saluki, and P. viridipennis and two new species from Sri Lanka viz. P. ogloblini and P. schereri are described and illustrated. Thrylaea Jacoby is treated as a new junior synonym of Phaelota. A lectotype for Phaelota variabilis (Jacoby) is desig- nated and the species is removed from the synonyms of P. flavipennis (Motschulsky). The consequences of loss of flight on host plant selection in Phaelota are discussed and a key to the species of the Indian subcontinent is provided

    Orisaltata, a new genus of flea beetles from the Oriental Region (Coleoptera: Chrysomelidae)

    Get PDF
    A new genus, Orisaltata, with the type species Aphthona azurea Jacoby (the only known species) from the Oriental Region is described and illustrated. Comparative notes and host plant information are provided. Aphthona babai Kimoto is synonymized with Orisaltata azurea

    Improving Performance of Quantum Heat Engines by Free Evolution

    Full text link
    The efficiency of a quantum heat engine is maximum when the unitary strokes are adiabatic. On the other hand, this may not be always possible due to small energy gaps in the system, especially at the critical point where the gap vanishes. With the aim to achieve this adiabaticity, we modify one of the unitary strokes of the cycle by allowing the system to evolve freely with a particular Hamiltonian till a time so that the system reaches a less excited state. This will help in increasing the magnitude of the heat absorbed from the hot bath so that the work output and efficiency of the engine can be increased. We demonstrate this method using an integrable model and a non- integrable model as the working medium. In the case of a two spin system, the optimal value for the time till which the system needs to be freely evolved is calculated analytically in the adiabatic limit. The results show that implementing this modified stroke significantly improves the work output and efficiency of the engine, especially when it crosses the critical point.Comment: 8 pages, 8 figure
    corecore